

Aircraft Noise Monitoring System

Ever since introducing the sound level meter N-1101 in 1956, RION Corporation has been active as a leader in the field of noise measurement research and in the development and marketing of high-quality sound level measuring equipment.

For over 40 years, we also have been engaged in developing, manufacturing and marketing products designed for environmental noise monitoring.

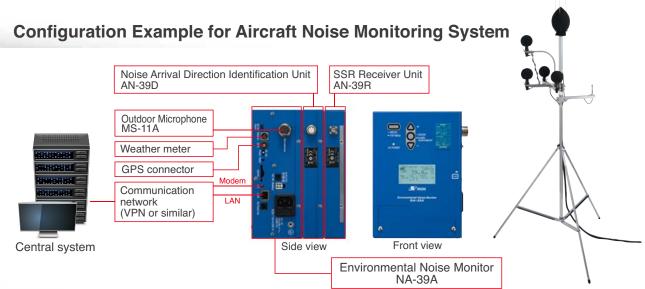
Ensuring a safe and comfortable living environment for all members of society is more important than ever. We are now offering a state-of-the-art aircraft noise monitoring system that fully reflects our extensive experience and technological know-how in this field.

The RION advantage

- Support for long-term, unattended monitoring periods is built into the system as a matter of course.
 The MS-11A microphone incorporates an automatic sensitivity checking function that checks daily for continued accuracy.
- Aircraft noise identification by sound is possible with two integrated methods: sound arrival direction identification and noise event clustering identification using frequency analysis.
- Highly efficient energy saving design, compact dimensions, and low weight.

All required functions for aircraft noise measurement combined in a single system

Improved aircraft identification supports
long-term measurement and generates more accurate data.
Compact and lightweight design facilitates installation.
Power consumption reduced by about fifty percent.


Aircraft Noise Monitoring System

This system is designed for automated monitoring of aircraft noise. It is capable of calculating evaluation values according to the "Environmental Standard Related to Aircraft Noise".

The sound source identification provided as a standard feature is based on real time 1/3 octave band analysis. A GPS function is also standard, for obtaining location information and enabling automatic time calibration.

- Various noise level data along with time and location information from the GPS are saved on SD card.
- Noise arrival direction information and aircraft transponder data are recorded simultaneously with noise event data. (Using optional Noise Arrival Direction Identification Unit AN-39D and SSR Receiver Unit AN-39R)
- Real sound recording program NX-39WR (option) allows sound recording in two format types:
 - Compressed (for long-term recording)
 - PCM (for analysis)
- LAN port and modem connector enable Internet connection via an external router or an ordinary telephone line.
 Data collection and compilation can be performed automatically, and the data transfer in real time supported.
- Standard compliance
 - Environmental Standard Related to Aircraft Noise (Dec. 17, 2007)
 - Aircraft Noise Measurement/Evaluation Manual (Nov. 2012)
 - ISO 20906: 2009 (Acoustics -- Unattended monitoring of aircraft sound in the vicinity of airports)

Product Information

Environmental Noise Monitor NA-39A

Compliant with IEC 61672-1: 2013 class 1 (JIS C 1509-1: 2017 class 1) (Also when dedicated microphone extension cable up to 105 m and all-weather windscreen is used) Standard configuration includes one-third octave frequency analysis function.

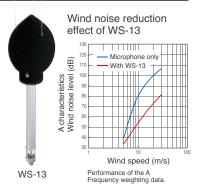
Outdoor Microphone MS-11A

A microphone is a very delicate and precise device which means that there is a possibility of temporary or permanent change in sensitivity during prolonged outdoor use. The Outdoor Microphone MS-11A therefore incorporates an anti-condensation heater that counteracts the main cause of sensitivity drift. An internal sound source for testing is also provided, enabling daily automatic sensitivity checking.

MS-11A

Noise Arrival Direction Identification Unit AN-39D

Elevation angle and bearing are measured using four microphones, to identify the arrival direction of aircraft noise and ground-level sound. From the sound source location and movement direction, aircraft noise can be identified with high accuracy.


Receives SSR (Secondary Surveillance Radar) information used for air traffic control. Capable of capturing the squawk code (temporary 4-digit identification code), pressure altitude, and address (unique aircraft number). (Only for aircraft transmitting this information)

SSR Receiver Unit

AN-39R

All-Weather Windscreen WS-13

The all-weather windscreen is specially designed for the Outdoor Microphone MS-11A used with the Environmental Noise Monitor NA-39A. The combination of NA-39A and WS-13 ensures that the JIS C 1509-1: 2017 class 1 specifications are met with the windscreen in place. Wind noise at a wind speed of 10 m/s is less than 60 dB (A-weighted), and the bird spikes guard against damage by birds. Furthermore, the WS-13 not only reduces the adverse effects of wind noise, it also provides precipitation protection with an IPX3 rating.

Options

Carrying Case

Convenient for mobile measurement.

System example

Tilt type microphone stand Cubicle example ST-88S

This collapsible tripod is easy to set up and maintenance-friendly.

Overall height (fully extended): 4 m *The photo shows the product in combination with the WS-13 and AN-39D.

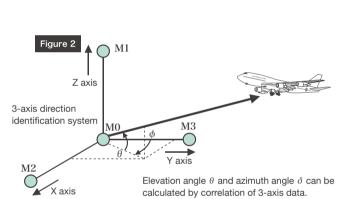
QC-01

Suitable for outdoor installation. Internal ventilation is a standard feature, and a heater can also be installed as necessary.

System example

Principle

Two microphones are arranged in a perpendicular position as shown in Figure 1, with the distance between the microphones expressed as d. When the sound from an aircraft arrives with an elevation angle θ , the following equation applies, where τ is the time difference between the arrival time of the sound at the two microphones (M1, M2), and c is the acoustic speed in air. Based on the equation, the elevation angle θ can be determined.


$$\tau = \frac{\mathrm{d}}{c} \times \sin(\theta)$$

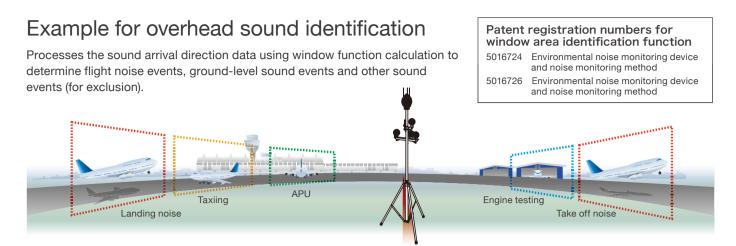
When the sound arrival direction is sufficiently steep $(\theta > 0)$, the elevation angle information can be used for the identification of aircraft sound. When a sound event is detected, track of elevation angle is also recorded, and events which fulfill certain specified conditions (angle threshold and angle ratio) are considered as aircraft noises.

Detection of sound arrival direction in 3-axis.

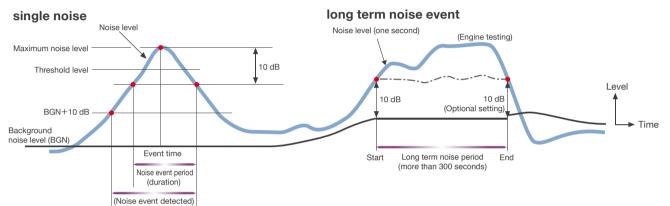
As shown in Figure 2, four microphones are arranged on three orthogonal axes.

This allows calculation of sound arrival direction vectors (elevation angle, azimuth angle) which can be used to identify the direction of the sound source more precisely.

Time difference


Surface sound event

 $(\theta < 0^{\circ}, \text{ on land surface})$


SSR Receiver Unit AN-39R

This device receives the response signal of the aircraft to the secondary radar (SSR: Secondary Surveillance Radar) of the air traffic control system to detect the proximity of aircraft.

Air traffic control systems constantly send radar inquiry signals to aircraft to which aircraft reply with an identification code and other information including pressure altitude data. The AN-39R can receive such response signals. The distance of approach of an aircraft is detected by receiving the intensity of a radar signal level. By comparing the signal to a certain threshold as synchronized to a sound event, identification of the sound event as aircraft is possible. By using a combination of acoustic and radar signal detection, information of the identification can be increased, especially in acoustically complex locations where the aircraft may be intermittently blocked from other sound.

Aircraft noise event detection method

Visualization of how ground noise is generated

Description of ground noise

Types of noise generated by aircraft

Single noise event

This is a temporary noise which occurs sporadically, such as noise caused by air travel that can be observed within the vicinity of the airport. Above-ground noise produced by aircraft is also a form of single noise.

Long term noise event

This noise is steadily produced over a long period of time, but the noise level fluctuates greatly. Common examples are engine testing noise and the noise originating from the auxiliary power unit (APU).

Glossary

Take off noise

This noise occurs from the time the aircraft starts to taxi out from the end of the runway to the time it reaches the middle of the runway and finally takes off.

Taxiing

Taxiing indicates the ground run of the aircraft as it travels between the tarmac and the runway.

Landing noise

This noise occurs as the aircraft descends, touches down on the runway of the airport, and then reverses the thrust direction of the engines to reduce speed as it leaves the runway.

Engine testing

This test is performed to check the operation of the aircraft engines.

APU

This small engine (Auxiliary Power Unit) is mounted separately from the main aircraft engine. It is the power source used to supply compressed air, hydraulic pressure, and electric power to the aircraft while it is on the tarmac.

Touch and go

This refers to increasing engine output and taking off from the ground after approaching, landing, and reducing speed on the runway as a part of an exercise for take-off and landing training.

Hovering

This refers to when a helicopter lifts off and remains stationery while in the air.

■ Specifications NA-39A

	Specifications I	NA-39A
Α	pplicable standards	Measurement Act, High-Precision Sound Level Meter,
		JIS C 1516: 2014 (Sound level meters Measuring instruments used in transaction or certification)
		IEC 61672-1: 2013 class 1, JIS C 1509: 2017 class 1,
		IEC 61260: 2014 class 1, EN61326-1,EN300 440-2,
		CE marking, Low Voltage Directive, WEEE Directive, VCCI class B
М	easurement functions	
	RAW data	Time-weighted sound pressure level Lp
	(every 100 ms)	Time average sound pressure level Leq
		Maximum time-weighted sound pressure level L _{max}
		Minimum time-weighted sound pressure Level Lmin
		Peak sound pressure level L_{peak}
		*Any combination of frequency weighting characteristics A/C/Z and time weighting characteristics F/S/I is possible.
		*Data recorded on recording media and data output via communication link
	LCD data display	can be any two of the above functions. Time-weighted sound pressure level L_p
	LOD data display	
		Time average sound pressure level Leq
		Maximum time-weighted sound pressure level L _{max}
		Peak sound pressure level L _{peak}
		*Any combination of frequency weighting characteristics A/C/Z and time weighting characteristics F/S/I is possible.
		*Screen display is possible for one of the above functions.
	1/3 octave band data	Time-weighted sound pressure level L_p
	(every 100 ms)	Time average sound pressure level Leq
	Real sound data	Option (NX-39WR)
	Measurement data	Leq - 1s, Leq 1 min, environment vector, single noise event,
		SSR event, single noise event arrival direction, event spectrum
M	icrophone and	Outdoor Microphone MS-11A
ıq	eamplifier	
-	easurement level range	
	A-weighted	28 dB to 138 dB
	C-weighted	36 dB to 138 dB
	Z-weighted	42 dB to 138 dB
R	esidual noise level	12 45 10 100 45
	A-weighted	20 dB max.
	C-weighted	28 dB max.
	Z-weighted	34 dB max.
_	easurement frequency range	10 Hz to 20 kHz
	requency weighting	A characteristics, C characteristics, Z characteristics
	ne weighting characteristics	F (Fast), S (Slow), I (Impulse)
	evel range switching	No (single range requires no switching)
R	MS detection circuit	Digital processing method
S	ampling cycle	Lp, Leq, Lmax, Lmin, Lpeak
		20.8 μs (Sampling frequency 48 kHz)
R	eference frequency	1 kHz
Re	ference sound pressure level	94 dB
С	orrection function	
	Windscreen	Provides frequency response correction so that standard
	correction	requirements are met with windscreen WS-13 attached;
		on/off switchable by key operation or communication command.
	Diffuse sound field	Provides frequency response correction so that standard
	correction function	requirements are met in a diffuse sound field
		On/off switchable by communication command
		* This product is referenced to zero degrees (front of microphone).
D	isplay and main	Monochrome LCD with backlight, 64 (H) x 128 (W) dots
d	isplay contents	Numeric display: 0.1 dB resolution (refresh cycle 0.5 s)
		Alarm indication: OVER triggered at 138.3 dB (1 kHz)
		UNDER triggered at -0.5 dB below measurement lower limit
_		Language: English
0	peration panel	
	Input/output connectors	
	LAN port	1 (10BASE-T/100BASE-TX)
4	Modem connector	1
		For meteorograph data acquiry and control
	Weather meter connector	
A	Weather meter connector C output	
A		A characteristics / C characteristics / Z characteristics
A	C output	A characteristics / C characteristics / Z characteristics (selectable by key operation or remote command)
A	C output Frequency weighting	(selectable by key operation or remote command)
A	C output	(selectable by key operation or remote command) 1 Vrms (at full-scale point), full-scale 90 dB / 110 dB /
A	C output Frequency weighting Output voltage	(selectable by key operation or remote command) 1 Vrms (at full-scale point), full-scale 90 dB / 110 dB / 130 dB (selectable by key operation or remote command)
A	C output Frequency weighting Output voltage Output impedance	(selectable by key operation or remote command) 1 Vrms (at full-scale point), full-scale 90 dB / 110 dB / 130 dB (selectable by key operation or remote command) 50 Ω
	C output Frequency weighting Output voltage Output impedance Load impedance	(selectable by key operation or remote command) 1 Vrms (at full-scale point), full-scale 90 dB / 110 dB / 130 dB (selectable by key operation or remote command) 50 Ω 10 k Ω or more
	C output Frequency weighting Output voltage Output impedance	(selectable by key operation or remote command) 1 Vrms (at full-scale point), full-scale 90 dB / 110 dB / 130 dB (selectable by key operation or remote command) 50 Ω 10 k Ω or more SDHC card (standard 8 dB)
R	C output Frequency weighting Output voltage Output impedance Load impedance	(selectable by key operation or remote command) 1 Vrms (at full-scale point), full-scale 90 dB / 110 dB / 130 dB (selectable by key operation or remote command) 50 Ω 10 k Ω or more
A	C output	A characteristics / C characteristics / Z characteristics

Event detection	Single noise events and long-term noise events can be detected
function	in accordance with aircraft noise measurement manuals.
Clock	
Functionality	Year / Month / Day / Hour / Minutes / Seconds (0.1 s resolution)
Accuracy	±10 ppm or better
Calibration	Clock calibration by GPS or NTP
Power requirements	
AC power source	
Input voltage range	100 to 240 V AC (±10 %)
Power supply frequency	50 Hz/60 Hz (±5 %)
DC power source (12 V)	
Operation voltage range	9 to 15 V
Power failure backup	With charging function while AC power is supplied (Option)
battery (12 V)	
Supported battery type	12 V sealed lead-acid storage battery
Ambient conditions for operation	
Temperature	-10 °C to +50 °C
Humidity	max. 90 % RH (no condensation)
Dimensions and weight	
Dimensions	Approx. 200 (H) x 140 (W) x 79 (D) mm (without protruding parts)
Weight	Approx. 1.5 kg (excl. microphones and cables)
Supplied accessories	Outdoor microphones, power cord,
	GPS antenna (with 2 m cable), SDHC card (8 GB)

Options

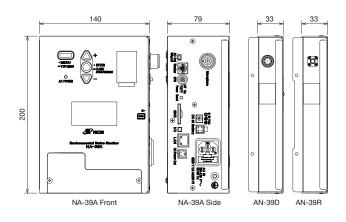
Name	Model
Noise Arrival Direction Identification Unit	AN-39D
SSR Receiver Unit	AN-39R
Real Sound Recording Software	NX-39WR
Enclosure example	QC-01
Enclosure mounting brackets	NA39S110
Carrying case (Special cases for various solutions)	
Meteorograph	
Lead-acid storage battery	
External battery connection cable	
Modem cable	CC-42M
SDHC card (8 GB)	MC-80SS2
All-weather windscreen	WS-13
Tilt type microphone stand	ST-88S
7P microphone extension cable	EC-04 series
Identification extension cable	EC-39D series
SSR antenna extension cable	EC-39R series
GPS extension cable	59GPS series

Outdoor Microphone MS-11A

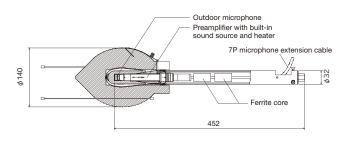
Microphone	1/2 inch electret microphone
Nominal outer diameter	13.2 mm
Sensitivity level	-29 dB (re 1 V/Pa at 1 kHz, reference environment)
(incl. preamplifier)	
Built-in sound source	250 Hz, 500 Hz, 1 kHz, 4 kHz (for operation checking)
	114 dB (Sound pressure level)
Heater	
Heater current	94 mA DC
Heater power consumption	0.9 W
Ambient conditions for operation	-20 °C to +50 °C, 100 % RH or less (no condensation)
Storage temperature range	-10 °C to +50 °C
Dimensions and weight	Outer diameter: 16 mm x 141.3 mm / approx. 120 g

Real Sound Recording Software NX-39WR

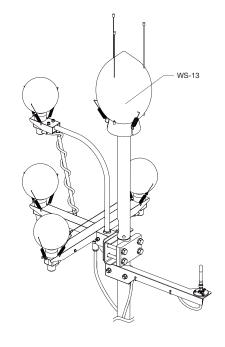
•		•
For real sound recording function		Records the sound pressure level waveform obtained from the
		sound level meter of the NA-39A as a file.
F	ile format	
	Data	Non-compressed (WAV), Lossy compression (mp3)
	Bit word length	16/24 bits, selectable
	Sampling frequency	48 kHz
	Frequency weighting	Z characteristics
	Data volume	Aircraft noise, 40 days (1 000 events per day / 5 s duration / mp3):
		Approx. 55 hrs (4 hrs if non-compressed) *8 GB SDHC card
Ti	rigger functions	
	Event trigger	Recording from Lmax detection when single noise event detection is used
		Recording begins from immediately before Lmax
	LTNE event trigger	Recording a part of event sections at multiple locations when
		constant noise event detection is used
	Interval trigger	Recording starts at constant intervals and continues for a specified duration
		(Example: Recording 10 minutes in every hour)
	Level trigger	Recording is always performed while the noise level exceeds a
		certain threshold (interval trigger)


Noise Arrival Direction Identification Unit AN-39D

Ν	lain unit	
	Measurement range	35 dB to 130 dB (no frequency correction)
	Input frequency	20 Hz to 20 000 Hz
	A/D converter	Resolution 24 bits
	Ambient conditions	-10 °C to +50 °C, 90 % RH or loss
	for operation	
	Dimensions and weight	200 (H) x 140 (W) x 32.9 (D) mm main unit) / Approx. 520 g
M	licrophone stay section	
	Sensors	Microphone x 4, Preamplifier x 4
	Dimensions and weight	421 (H) x 444 (W) x 323 (D) mm / Approx. 2.6 kg


SSR Receiver Unit AN-39R

Applicable standards	CE marking, WEEE Directive
Input section	-
Antenna	1/4λ omnidirectional antenna x 1 (SMA connector)
Input connector	SMA x 1
Measurement range	Within approx. 10 km
Carrier frequency	1 090 MHz
Ambient conditions	-10 °C to +50 °C, 10 % to 90 % RH
for operation	
Dimensions and weight	200 (H) x 140 (W) x 32.9 (D) mm / Approx. 560 kg
	(Mounting on 22 mm dia. and 32 mm dia. microphone stands supported)
Supplied accessories	Antenna: 1/4λ antenna x 1
	Antenna stay x 1 (incl. bolt)


● Dimensional Drawing (Unit: mm)

●WS-13 Structural Diagram (Unit:mm)

External view of sensor section

RION Co., Ltd. is recognized by the JCSS which uses ISO/IEC 17025 (JIS Q 17025) as an accreditation standard and bases its accreditation scheme on ISO/IEC 17011. JCSS is operated by the accreditation body (IA Japan) which is a signatory to the Asia Pacific Laboratory Accreditation Cooperation (APLAC) as well as the International Laboratory Accreditation Cooperation (ILAC). The Quality & Environmental Management system Center of RION Co., Ltd. is an international MRA compliant JCSS operator with the accreditation number JCSS 0197.

* Windows is a trademark of Microsoft Corporation. * Specifications subject to change without notice.

Distributed by:

3-20-41, Higashimotomachi, Kokubunji, Tokyo 185-8533, Japan Tel: +81-42-359-7888 Fax: +81-42-359-7442

